Lecture 2

neural networks and how to monitor the learning process

Claudia Acquistapace
Istitute for Geophysics and Meteorology
University of Cologne
email: cacquist@uni-koeln.de

o//

About the lectures
(and me)

Slides of the lectures and additional lectures notes with additional material
can be found at:

https://tinyurl.com/teachingUnibo2024

You can always contact me at cacquist@uni-
koeln.de for questions on the lectures or on
whatever (i.e. master thesis, Erasmus, living
in Germany etc), | am happy to help you

[@loEle]

Info about me

www.claudiaacquistapace.it

and

We are also on social media, if you want to follow us:

@EXPATS ideas4s

@EXPATS-ideas4s

N
AR A) UNIVERSITY
LLY) oF coLoeNE

Recap from last week

0 The problem of image
classification or... assigning a
label to an image with a
computer

BLER

Recap from last week

c The problem of image
classification or... assigning a
label to an image with a
computer

Stretching pixels in a single column

Q The simplest data driven approach: a linear classifier
and a loss function

K, the number of
N columns (image pixels) d rows, as for
—_—

CIFAR10, is 10 (ten
classes: dog, tier,

input image

dimension of the images is D = 32 x 32)
x 3 = 3072 pixels, for the example we e
assume D=3

BLER

Recap from last week

c The problem of image
classification or... assigning a
label to an image with a
computer

Q The simplest data driven approach: a linear classifier
and a loss function

K, the number of
N columns (image pixels) rows, as for
—_—

CIFAR10, is 10 (ten
classes: dog, tier,

input image

dimension of the images is D = 32 x 32)
x 3 = 3072 pixels, for the example we e
assume D=3

For the way backward, we apply the chain rule
af dq
dg oz~

e Learning process via optimization (and the various
processes behind it)

BLER

Activation functions and multilayer perceptron

Artificial neural networks

Topics for
today

Monitoring the learning process

BLER

1

Activation functions and multilayer perceptron

BLER

Activation functions and multilayer perceptron

Last time, we discussed a linear classifier computing scores associated to input images as

Stretching pixels in a single column . .
i .
. - A
A . J
0.5 13 1.5 234 0.45 196.55 RABBIT
g b e | _
| 0.87 0.39 -0.24 152 | ¢ 3.2 230.72 CAT
o 4 rows 5 ¥
. & (labels) p
£ . 0.11 -0.21 0.56 79 g 1.4 36.6 DOG
: ~ =z
: 0.97 -0.42 -0.8 2.8 230.42 TIER
- > v .
v = W XI b f(zi, W,)
input image N columns (image pixels) 4 elements
€ > (labels)

f(z;,W,b) = Wz; +b flz;, W) = Wz,

AR
iz 50 2\
H s UNIVERSITY

2 &5
Lt <

[@loEle]

Multilayer perceptron and neural networks

How can we construct a simple neural network starting from our linear model?

flzi, W,b) = Wz; +b
3072 x1 10 x

‘—__-§ f ‘———-$ 10 numbers giving

class scores
10x 1

32x32x3 W
3072 in total parameters or weights
10 x 3072

P\
(AN UNIVERSITY
OF COLOGNE

[@loEle]

To build a 2 layer neural network, we introduce a non-linearity in this system, for example:

s = Womaxz (0, W)

o gRIANA
(A UNIVERSITY
Q! OF COLOGNE

[@loEle]

To build a 2 layer neural network, we introduce a non-linearity in this system, for example:

s = Womaz(0, Wix)

only positive values of

W1x pass
X Wi . W2 ~ class scores
10
2073 X 1] [50 x 2073] 110 x 50] 10

output gate of W1lx
becomes input of
another gate W2

[@loEle]

Activation functions

The non-linearity introduced is often called
“activation function”.

These functions take the input number and apply

some type of mathematical operations on it.

Introduces
They introduce a non-linearity which is conditioned @ non-linearity
by a threshold value
. . =/ E Wi
What are typical functional forms for f? _

[

conditioned by a threshold

%5 $' OF COLOGNE

[@loEle]

Activation functions

gigmoid Tanh

e /o
1 3~
'D““'C:‘ R «o.l.\(%ti)
Sofesign ELU Log of Sigmoid

i /2

. x
Y (1+~1x))

cinC

smx
g‘ .\‘) :.M’t(l““) '3“(’“‘”“(‘»}

)/ OF COLOGNE

Figure source: https://sefiks.com/tag/activation-function/ @ v

Activation functions

— iy o ,
1 [
v Bl P S Threshold: x >=0
ReLU Coftsign
= =
o, »<0 °
| g .
190 9 v

s s‘r:(t) y» max(atx, x) 79 * < Utmanin { 5008 o))

)/ OF COLOGNE

Figure source: https://sefiks.com/tag/activation-function/ amn) oz

Activation functions

%. 1, N ‘.l“(1b¢i)

ELU [Log of Sigmoid
4 ’ J

:

= ale-1) , 240 2

" ,MA30

3 tu(—]

Leaxky ReLLU Mish Threshold: x>=0

s s‘r:(t) y» max(atx, x) 79 * < Utmanin { 5008 o))

)/ OF COLOGNE

Figure source: https://sefiks.com/tag/activation-function/ i e

Example of RELU in action

g =20°C v=10m/s
after
normalization @ O

0.7

r=80% Activation function formula

f (Z ut,::}:,,) » RelLU = max ((L Z W; ;)

! !

Compute weighted sum
Z w;x; = (w1 X x1) + (we X x2) + (w3 X x3)

(

___________ —0.7%x0.6+02x054+0.6x 0.6
— (.88

Output of this neutron

0.88

after
denormalization @ 88% f (Z u ";Jj'*,> — ?’TJ.(I_;IT((L {)88) — ().88

The precipitation value !

< /‘\ 2
(TR UNIVERSITY
QL)) OF COLOGNE

[@ose) Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jiilich Forschungzentrum

Why do we need them?

1) They help in keeping the output of a neuron within a certain range we decide

based on our needs, avoiding computational issues caused by numbers growing

to extremely large values in the network.

DI0ISIE)
(AN UNIVERSITY
‘.' o B
OF COLOGNE

Why do we need them?

) J—

1) They help in keeping the output of a neuron within a certain range we decide
based on our needs, avoiding computational issues caused by numbers growing

to extremely large values in the network.

2) They add non-linearity to the network. If the model needs to learn non-

linear patterns, like for example in classification tasks, then specific non-

linear layers need to be added to the network.

(AN UNIVERSITY
OF COLOGNE

[@loEle]

Why do we need them?

1) They help in keeping the output of a neuron within a certain range we decide

based on our needs, avoiding computational issues caused by numbers growing

to extremely large values in the network.

2) They add non-linearity to the network. If the model needs to learn non-
linear patterns, like for example in classification tasks, then specific non-

linear layers need to be added to the network.

During backpropagation (gradient descent), gradients get multiplied with the activation functions. If the activation functions re-
scale the input into a range of values between 0 and 1, this means that values of the gradients get strongly reduced.
In general, gradients tend to vanish because of the depth of the network and this problem goes under the name of “vanishing
gradient problem”.

(@O (11 Frcea

One slide on history

It all started with a model of the
brain... (McCulloch and Pitts)
Linear model with
positive/negative outputs given
input and weights

1940

o -
) JEP

The model was not
learning unless you
fixed weights

[@oElel

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

One slide on history

It all started with a model of the Rosenblatt extended the model to
brain... (McCulloch and Pitts) learn weights to generate the
Linear model with output: he created the perceptron,
positive/negative outputs given initially intended for image
input and weights recognition, people think it could

represent any circuit and logic.

1940
1950

o -y
B qn =

The model was not
learning unless you
fixed weights

(000

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

One slide on history

It all started with a model of the
brain... (McCulloch and Pitts)
Linear model with
positive/negative outputs given
input and weights

1940

o -y
B qn =

The model was not
learning unless you
fixed weights

[@eElel

Rosenblatt extended the model to
learn weights to generate the
output: he created the perceptron,
initially intended for image
recognition, people think it could
represent any circuit and logic.

1950

Perceptron combines inputs in a sum and, if the weighted

sum exceeds a threshold, the neuron produces the output.

x1

X2

X3

wl

>
w2

S T —Y
w3

activation

>

function (sigmoid in
the first model)

Perceptron is used for binary classification with

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

such descrete output

==

S o
~..-0

One slide on history

It all started with a model of the
brain... (McCulloch and Pitts)
Linear model with
positive/negative outputs given
input and weights

1940

Rosenblatt extended the model to
learn weights to generate the
output: he created the perceptron,
initially intended for image
recognition, people think it could
represent any circuit and logic.

Perceptron combines inputs in a sum and, if the weighted

sum exceeds a threshold, the neuron produces the output.

x1

X2

X3

wl

>
w2

S T —Y
w3

activation

>

function (sigmoid in
the first model)

Perceptron is used for binary classification with

such descrete output

==

S o
~..-0

1969

Minsky and Papert showed it couldn’t represent the , and

The model was not
learning unless you

fixed weights o ,
highlighted the fact that Perceptron, with only one neuron, can’t be

applied to non-linear data.

(000

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

https://en.wikipedia.org/wiki/XOR_gate

Multi-layer perceptron

The Multilayer Perceptron was developed to tackle this limitation.
It is a neural network where the mapping between inputs and output is non-linear.

1' -----
Hidd (update weights)
llav_.r:rn compute backpropagation
prediction
] 1] 1] 1 1] 1]
_ : . _ 1 perceptron
0 2 Uy eweas UN +1 Dendrites
loss computation «— ~ — — - I I I I =
{y| y2 Yz ... YN 1} -
Target values

Processing

\ _ -Z). /
gynapses output J
- ¢ \ou s conditioned by a threshold
conditioned by a threshold
h]]]

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jiilich Forschungzentrum

/ bias =0

W oF

H
H

OF COLOGNE

Model set up

regularization loss

_‘ score function

=
.

”f(:lti, W)

data loss

-

The Multilayer Perceptron is a neural network where the mapping between
inputs and output is non-linear and it is our score function

(update weights)
COI'Z!?:;B backpropagation
prediction

1 perceptron

Weights are initialized randomly

Target values

The activation function f can be chosen, in
our case we take RELU

The multilayer perceptron gives us a score y

Model set up

regularization loss

_‘ score function

=

— | = “f(xivw)

data loss

"

We define as loss function the Mean
Squared error

N

N—1
! Z - \2

1=()

The Multilayer Perceptron is a neural network where the mapping between
inputs and output is non-linear and it is our score function

(update weights)
COI'Z!?:;B backpropagation
prediction

1 perceptron

Weights are initialized randomly

Target values

The activation function f can be chosen, in
our case we take RELU

The multilayer perceptron gives us a score y

A\ UNIVERSITY
)| OF COLOGNE

Model set up

regularization loss

—I score function

=

— = .f(:Bi,W)

data loss |

“L

We define as loss function the Mean
Squared error

N—1

! ~)2
MSE =<3 (v~)

We add the
regularisation term
(regularization loss)

AR(W)

The Multilayer Perceptron is a neural network where the mapping between
inputs and output is non-linear and it is our score function

(update weights)
Corf;?:tfe backpropagation
prediction

1 perceptron

Weights are initialized randomly

Target values

The activation function f can be chosen, in
our case we take RELU

The multilayer perceptron gives us a score y

aX
b
’

(TN UNIVERSITY
NMATY) OF COLOGNE

Model set up

rewlarization loss

—I score function

o f(wi,W)] data loss “‘L

@OC

We define as loss function the Mean
Squared error

We add the
regularisation term

(regularization loss)
N—1

, 1 A\ 2
MSE =<3 (v~)

AR(W)

The Multilayer Perceptron is a neural network where the mapping between
inputs and output is non-linear and it is our score function

(update weights)

compute backpropagation

prediction

loss computation

Weights are initialized randomly

Target values

The activation function f can be chosen, in
our case we take RELU

The multilayer perceptron gives us a score y

Weights are learned via backpropagation following gradient
descent.

What does that mean? calculating the gradient of the Mean
Squared error across all input/output pairs and unpdating
weights with the values obtained with the gradients,

55'\ A ,-;
(TR uNvERsITY
MY oF coLoaNE

P
&, F S
o <

Example of loss computation and back propagation

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast
precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation
is 88% with such values (or y label)

T=20°C v=10 m/s r=80%

normalized input values

7N\
10229 /.
N Y
22.9%

A\
(TR UNIVERSITY
LD oF coLoeNE

[@ose) Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jiilich Forschungzentrum

Example of loss computation and back propagation

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast
precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation
is 88% with such values (or y label)

T=20°C v=10 m/s r=80%

normalized input values

A\
(TR UNIVERSITY
LD oF coLoeNE

[@ose) Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jiilich Forschungzentrum

Example of loss computation and back propagation

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast
precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation
is 88% with such values (or y label)

T=20°C v=10 m/s r=80%

@ @ @ normalized input values
Q‘I D.e‘-‘;

\0.4 0.2
0.2
Calculating the loss (mean squared error)
I — t 0.2119 which is too big! This i
QT 2 we get 0. which is too big! This is
MSE = N Z{;(yi i) because the value we obtain, 22.9% is too
\0_3 0.2) - far from the value expected of 88%.
\ VRN
10229 /.
-‘\a_ f,f’f y
22.9%

G /‘\ 2
i) uversity
$ OF COLOGNE

©OS0) Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jilich Forschungzentrum

Example of loss computation and back propagation

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast
precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation
is 88% with such values (or y label)

T=20°C v=10 m/s r=80%
@ normalized input values
0.2
Calculating the loss (mean squared error)
_ 1 N—1 o we get 0.2119 which is too big! This is
MSE = N Z(yé —¥i)" because the value we obtain, 22.9% is too

1= far from the value expected of 88%.

We do gradient descent, to change the weights to get a lower MISE

/o old
Figure courtesy of Asma Semcheddine *a.._ e y) weight a:\f[SE gradient of Loss with
and Prof. Dr. Martin Schulz, Jalich 22.9%, Wi; = Wiy — L,) respect to the weight lr = ().00]1
Forschungzentrum new updated (71 F'ﬂ"j |

times the learning rate Ir

#5;@‘ UNIVERSITY
R AU,L}E OF COLOGNE

Example of loss computation and back propagation

We calculate the updated weight for the weight w31

i=3 l w31 — 0.3

T=20°C v=10 m/s =80% ' i [, = 0.001

23 = W3121 + W3229

Calculating the gradient of the loss with \J S} — l(yf — g!)ﬁ
respect to the weight W31 {

OMSE o OMSE 82) 833

E)u‘tﬂ E)Q E)Ej E)”tj[

1 0.229

Y

22.9%
[@ose) Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jiilich Forschungzentrum

N

(AN UNIVERSITY
L) oF coLoeNE

Example of loss computation and back propagation

We calculate the updated weight for the weight w31

?=3 $'ZL‘;;}; — !“’?i’f;f]I&HSE 51 —_ 0 3
T=20°C v=10 m/s =80% J=1 | | J Wi [, = 0.001

y = ReLU(z3) = 23
23 = W312] + W3229

Calculating the gradient of the loss with \J S} — l(y,, _ ﬁ?.)z

respect to the welght W31
N N

OMSE ,§MSE\I 9\ 0
OATEEY \ Dy ‘dz; 'l()rt51|
~ _ 7\ / \ /

OMSE .-~ = ,
(0220 Y . : =J0,229 — 0, 88) >4 1 ;<\U Jl’— 0, 3033201
Figure courtesy ofAsmaSemcheddme \ / duT:j 1 =~ —_— -
osngrenrn | 22:9% “ws; = 0,3 — 0,001 x 0,3033201 = 0, 3033201

N UNIVERSITY
ey (2
ﬂie‘ OF COLOGNE

[@loEle]

Updating all weights we can re-calculate the loss with the updated weights

T=20°C v=10 m/s r=80% T-ZD"C v=10 m/s r=80%

0,100781

0.201 1 r 80 30000976

¥

°

0,3033201 - 0,2024738

o)

023

NG .
T The value we obtain is slightly better, a ;j;i';x' B
Figure courtesy of Asma bit closer to 0.88

Semcheddine and Prof. Dr. Martin
Schulz, Jiilich Forschungzentrum M ore |te ratl Ons are n eed e d | |

AT
(PR UNIVERSITY
‘@@@@\ ﬂiﬁ%} OF COLOGNE

0,4011718

0,400631 5007812

»

1

Fully connected layers: artificial neural networks

Fully connected layer

2 layer fully connected neural network.

Figure re-elaborated based on the
material of the lecture series of the

Stanford University’s CS231n course.

output layer
input layer

hidden layer

™~

fully connected layers

, W ,. FI

1x 3072 10 x 3072 / 1x10

number resulting by the dot product
between a row of W and the input

Each of the fully connected layers works in this way:

no connections among neurons of the same layer.

AR
(AN UNIVERSITY
OF COLOGNE

[@loEle]

http://cs231n.stanford.edu

Neural network architectures

EXAMPLE OF A 3 LAYER NEURAL NETWORK

%':‘th*:\
)‘\“'// ‘\\ . output layer

input layer

hidden layer 1 hidden layer 2

A regular neural network [5x4’] [4x4] [4X"]
receives an input and
transforms it through a series

of hidden layers made of \2 u

neurons.

Neural network architectures

EXAMPLE OF A 3 LAYER NEURAL NETWORK

Each neuron is fully connected to

the neurons of the previous layer,

M @ o7 9N: if'\
of his layer. RN ‘:’;’

EXX PR —

‘\“'// \\ ‘ output layer

input layer
hidden layer 1 hidden layer 2

s [3x4] [4x41 [4x1]

receives an input and

transforms it through a series

of hidden layers made of \2 u

neurons.

Neural network architectures

The last connected
layer is called the

EXAMPLE OF A 3 LAYER NEURAL NETWORK

output layer; When the

goal is to perform a

Each neuron is fully connected to classification, it

the neurons of the previous layer,

contains simply the

| ,Q\
NS N\ <7
Oye 0 g
. ‘\‘.'// \\ ‘ output layer

input layer

but it does not share any
connection with the other neurons

of his layer.

hidden layer 1 hidden layer 2

s [3x4] [4x4] [4x1]

receives an input and
transforms it through a series

of hidden layers made of u u

neurons.

SRTRE
i 2 3¢ &\

TR universiTY
E OF COLOGNE

Neural network architectures

EXAMPLE OF A 3 LAYER NEURAL NETWORK
Number of layers: 3

Number of nheurons: 4 + 4 + 1

Number of parameters:

input layer blases: 4+4+1=9
s S e e in total: 41 learnable parameters

[3x4] [4x4] [4x1]

size of the neural network: number of neurons in the layers of the network (as

said before, excluding the input layer) or
the number of parameters.

2 "*\, RN
H«N»@ UNIVERSITY
2L oF coLooNE

2

Monitoring the learning process
(what to do to try to avoid problems)

BLER

Pre-processing of the data

1) Normalization of the input data

normalization brings all the features of the input on the same scale. But why we need it?

I\
{T8) UNIVERSITY
WLTZYS OF COLOGNE

[@loEle]

Pre-processing of the data
1) Normalization of the input data

normalization brings all the features of the input on the same scale. But why we need it?

Imagine that we have in particular two features having very
different scales. Also the weights associated to the features,
since the network output is the linear combination of the

feature vectors, will differ very much in scale, |
W

2

>

large updates on the directions F— D‘é

with the largest weights, and much

smaller updates on the direction of
the smallest feature, gradient

Y

oscillates alot and needs more W
steps to converge

& /‘\ o
(TR UNIVERSITY
2L oF coLooNE

[@loEle]

Pre-processing of the data

1) Normalization of the input data

normalization brings all the features of the input on the same scale. But why we need it?

Imagine that we have in particular two features having very features are normalized, the

different scales. Also the weights associated to the features, contributions to the gradient

: duri dient d t will b
since the network output is the linear combination of the uring gradient descent will be

of the same order, generating a

L.
-

feature vectors, will differ very much in scals\,l " w, more homogeneous descent

2

large updates on the directions §

with the largest weights, and much

smaller updates on the direction of
the smallest feature, gradient

Y
Y

EA
=

oscillates a lot and needs more
steps to converge

)

Y y

Figure 2.1: a) Example of gradient descent for two un-normalized features and b) gradient descent
when the features w1l and w2 are normalized. The graphics are taken from the wonderful article on

the batch normalization from Ketan Doshi

AN universiTY
MLV oF coLOGNE

[@loEle]

1) Normalization of the input data

< /;\ o
92 UNIVERSITY
)/ OF COLOGNE

[@loEle]

1) Normalization of the input data

3 main types of pre-processing

original data zero-centered data normalized data

10 10

10

Zero-centering. subtracting the mean from each of the individual
features of the data. It concides with the operation of centering the
data around the origin. With images, it is common to subtract a

single mean value from all pixels of the image (as done in AlexNet),
or to do this operation for each of the RGB channels (as done in
VGGnet).

Normalization. This is the process that brings data dimensions all on

-10
-10 -5

-10 -10
19 -10 -5 0 5 19 -10 -5 0 S 10

the same scale, approximately. It is obtained by first zero-centering
the data, and then by dividing each dimension by its standard
deviation. In case of images, this type of pre-processing is not really
needed because pixels scales are relatively equal (in the range 0-
255).

Figure 2.2: The pre-processing methods (figure from the slides of the lecture series of the Stanford course on
Computer vision with CNN.

< /;\,- 2
) UNIVERSITY
WLV OF COLOGNE

[@loEle]

1) Normalization of the input data

3 main types of pre-processing

original data zero-centered data normalized data

10 10

10

Zero-centering. subtracting the mean from each of the individual
features of the data. It concides with the operation of centering the
data around the origin. With images, it is common to subtract a

single mean value from all pixels of the image (as done in AlexNet),
or to do this operation for each of the RGB channels (as done in
VGGnet).

Normalization. This is the process that brings data dimensions all on

-10
-10 -5

-10 -10
19 -10 -5 0 5 19 -10 -5 0 S 10

the same scale, approximately. It is obtained by first zero-centering
the data, and then by dividing each dimension by its standard
deviation. In case of images, this type of pre-processing is not really

needed because pixels scales are relatively equal (in the range 0- original data decorrelated data whitened data
255). 10 10 10

PCA and whitening. Data are centered as described above, but in this 5

case we then calculate the covariance matrix that will give
information about the correlation structure of the data. Then we 0

apply the singular value decomposition to obtain the eigenvectors
and array of singular values. The transformation of data covariance i
into the identity matrix corresponds to squeeze the data in an

isotropic bubble (PCA dimensionality reduction) -- can greatly i

~10 -10
1g -10 -5 0 5 1g -10 -5 0 S 10

amplify noise

Figure 2.2: The pre-processing methods (figure from the slides of the lecture series of the Stanford course on
Computer vision with CNN.

< /;\,- 2
) UNIVERSITY
WLV OF COLOGNE

[@loEle]

2) Weight initialization

Option 1) set all weights initially to 0

the network will not learn because there is no simmetry breaking: all neurons will do the same thing,
and they will all give the same gradient, so they will be updated in the same way.

IV
{T8) UNIVERSITY
WLTZYS OF COLOGNE

[@loEle]

2) Weight initialization

[@loEle]

Option 1) set all weights initially to 0

Option 2) set of small random numbers.

the network will not learn because there is no simmetry breaking: all neurons will do the same thing,

and they will all give the same gradient, so they will be updated in the same way.

the simmetry would be broken, but
the network might not work for deep
architectures

) 05 10100500 05 10-10-05 00 05 10-10-0500 05 101005 00 65 10100500 05 10-10-05 0 5 10-10-05

Distribution of the activation functions when initialization is performed using small random numbers. The mean stays
constant, but the variance gets soon attenuated to zero. From Stanford lectures

A UNIVERSITY
J: OF COLOGNE

2) Weight initialization

Option 1) set all weights initially to 0

the network will not learn because there is no simmetry breaking: all neurons will do the same thing,
and they will all give the same gradient, so they will be updated in the same way.

Option 2) set of small random numbers.

the simmetry would be broken, but = 1 “ | : (

) 05 10-10-05 5 10-10-06 51 ‘ -0 5 05 10-10-0% 5 10-10-05% 5 10-10-05% 5 10-10-0¢ 5 10-10-06 § 10-10-05 51

the network might not work for deep

architectures

Distribution of the activation functions when initialization is performed using small random numbers. The mean stays
constant, but the variance gets soon attenuated to zero. From Stanford lectures

Option 3) “Xavier initialization” [Glorot et al., 2010]

Reasonable initialization based on

mathematical derivation, assumes

linear activations but with RELU it
breaks)

gy O N O O T

200510152025300005201520253050051015202530000310152025205005101520253000051015202530000510152025300005101520253000051015202530900510152025

Distribution of the activation functions for Xavier initialization with linear activation (top) and with ReLU non linear
activations (bottom)

[@loEle]

2) Weight initialization

Option 1) set all weights initially to 0

the network will not learn because there is no simmetry breaking: all neurons will do the same thing,

and they will all give the same gradient, so they will be updated in the same way.

Option 2) set of small random numbers.

the simmetry would be broken, but
the network might not work for deep
architectures

Option 3) “Xavier initialization” [Glorot et al., 2010]

Reasonable initialization based on
mathematical derivation, assumes

linear activations but with RELU it
breaks)

Option 4) He et al., 2015

accounted for non linearities by
modifying a scaling factor and making it
work with Relu activations

[@loEle]

l |

) 05 10-10-05 5 10-10-06 51 ‘ -0 5 05 10-10-0% 5 10-10-05% 5 10-10-05% 5 10-10-0¢ 5 10-10-06 § 10-10-05 51

Distribution of the activation functions when initialization is performed using small random numbers. The mean stays
constant, but the variance gets soon attenuated to zero. From Stanford lectures

LA H HOTLT

200510152025300005201520253050051015202530000310152025205005101520253000051015202530000510152025300005101520253000051015202530900510152025

Distribution of the activation functions for Xavier initialization with linear activation (top) and with ReLU non linear
activations (bottom)

3) Batch normalization

Network without batch normalization

nidden layer 1 ML SR ndden layer 2 e SRy hiciden ayer 3

What is batch normalization?

Batch normalization comes in the network as an additional layer that is
usually added to other blocks of the architecture, like the convolutional or

Network with batch normalization

hidden layer 1 activation 1).

the fully connected layer.

\ Y/

activation 2

il hidden layer 2 | SEEEE (8N)

(BN)

hidden layer 3

MY UNIVERSITY
)/ OF COLOGNE

©O80)

3) Batch normalization

What is batch normalization?

Batch normalization comes in the network as an additional layer that is
usually added to other blocks of the architecture, like the convolutional or
the fully connected layer.

Why does batch normalization help in training neural networks?

1) It reduces the internal covariate shift.

Covariate shift occurs when the model is trained with data
having a very different distribution with respect to the data which
are used for inference, slowing down convergence.
Batch Normalization helps the network train faster and achieve
o the batch higher accuracy.

optimization paper (loffe
and Szegedy, 2015): (a) (b, 1
c) The evolution of input == a = ===1¥

distributions to a typical (Vi)
sigmoid, over the course of

training, shown as {15, 50, D.& = = — Withoul BN

85}the percentiles. Batch —_— iith BN !
Normalization makes the or - Hatbirey

lﬂ{?ﬂ{ﬂ{m{:ﬂ:ﬁ-g

distribution more stable

and reduces the internal {ﬂ} {h} Withﬂ-l]t EH [C] With EN

covariate s hift

@oe

Network without batch normalization

hidden layer 1 é activation 1

Network with batch normalization

hidden layer 1 activation 1).

activation 2
(BN)

hidden layer 2 q e q hidden layer 3

hidden layer 2 |

activation 2

\ Y/

activation 2
(BN)

hidden layer 3

A UNIVERSITY
)/ OF COLOGNE

https://arxiv.org/abs/1502.03167v3

3) Batch normalization

Network without batch normalization

nidden layer 1 ML SR ndden layer 2 e SRy hiciden ayer 3

What is batch normalization?

Batch normalization comes in the network as an additional layer that is
usually added to other blocks of the architecture, like the convolutional or

Network with batch normalization

the fully connected layer.

hidden layer 1 activation 1
Why does batch normalization help in training neural networks? ‘ .

\ Y/

activation 2

il hidden layer 2 | SEEEE (8N)

(BN)

hidden layer 3

1) It reduces the internal covariate shift.

2) It smooths the loss function and the gradient.

Covariate shift occurs when the model is trained with data Smoothens the loss landscape

w

2

having a very different distribution with respect to the data which
are used for inference, slowing down convergence.

by changing the distribution of
the weights of the networks. In

Batch Normalization helps the network train faster and achieve this way, steps of gradient

From the batch higher accuracy.

optimization paper (loffe
and Szegedy, 2015): (a) (b, 1
c) The evolution of input == a = ===1¥

descent can be larger in a given

direction and learning rate can

be higher. If you want to know

distributions to a typical (Vi)
sigmoid, over the course of

more about this aspect, check
the paper from Li et al., 2018.

training, shown as {15, 50, D.&
85}the percentiles. Batch .
Normalization makes the oy i Bl

distribution more stable

and reduces the internal {h} Withﬂ-l]t EN [C] With EN

covariate s hift

R

https://arxiv.org/abs/1502.03167v3

©O80)

How does batch normalization practically work (does the normalization task)?

During training feedforward

phase, we provide as input
* two learnable parameters (beta and gamma) a mini-batch of data, i.e. M

Parameters of the batch normalization layer:

* two non-learnable parameters (mean moving average samples of the N features
and variance moving average)

M activations

M activations BN

MY UNIVERSITY
)/ OF COLOGNE

How does batch normalization practically work (does the normalization task)?

During training feedforward

phase, we provide as input
* two learnable parameters (beta and gamma) a mini-batch of data, i.e. M

Parameters of the batch normalization layer:

* two non-learnable parameters (mean moving average samples of the N features

M activations M activations BN

and variance moving average)

Operations the batch does in training

scaling and shifting is what
allows the batch to shift the

CALCULATING MEAN NORMALIZATION SCALING AND output to a different mean and
the parameters beta AND”STD SHIFTING standard deviation
L
and gamma are ne = 37 24 | A; —mupg BN, —~. A +3
learned in the T | on P A
training process, like MINIBATCH e J 37 24— o}
all weights and the OF SIZE M:
batch is optimizing contains M BN output
tl?czr;:til:\r::/i Itl:':;ntlcl)’lg Sa::lglii;f " CALCULATING MOVING MEAN AND
those giving the best VARIANCE
predictions. [imov O flmon + (1 _ ﬂf),bﬂi In addition to these, used to generate
the output, the layer also stores a
running count of the exponential
Representation of the AT oy + (1 —)0y moving average of the mean and

operations done in the batch
layer. The figure is based on

variance, obtaining an EMA at the end
of the training, that we will then use

the figure presented in the
article on Batch normalization
explained from Ketan Doshi.

in the inference phase

MY UNIVERSITY
)/ OF COLOGNE

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

How does batch normalization practically work (does the normalization task)?

During inference, after the training, the Operations the batch does in inference

activations flow in the same architecture. In this
case, in the batch layer, the normalization is

done using the two moving average parameters,

that have been calculated and stored during the

training CALCULATING MEAN NORMALIZATION SCALING AND
AND STD SHIFTING

P'“mo’u

A, —mupg

BN;=v-A; +p

OB

1 sample in
input BN output
CALCULATING MOVING MEAN AND
VARIANCE
P;mcm ﬂf.ﬂmaﬂ + (1 - ﬂf);ui
Representation of the T mmov + (]_ — (_I’)Ji

operations done in the batch
layer. The figure is based on
the figure presented in the
article on Batch normalization
explained from Ketan Doshi.

While ideally we could have calculated and saved the mean and variance for all the data in training, this operation would have been very expensive.
Moving average is a good proxy and it is more efficient because the calculation is incremental.

MY UNIVERSITY
)/ OF COLOGNE

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

[@loEle]

Methods to avoid overfitting

Data augmentation

In classification tasks, this can be easily
done by manipulating the input images
using some transformations like rotation,
rescaling or shifting

Max norm constraints

avoid overfitting by limiting the
values of the weights in the model
so that they modulus is less than a
fixed threshold. Typically, after
parameter update, the vector of
weights is forced to satisfy

4]z, < C

L1/L2 regularization

In L1 regularization, we add to the cost function the term
, Which a‘alI|QM/|s all the weights to decay to zero. It penalizes L2 regularization instead we add the term
the sum of the absolute values of the weights, and it is
robust to outliers. 1
~\w?
which penalizes tiie suin of the square
values of the weights (the peaky weight
vectors) and preferring the diffuse ones,
but it is less solid to outliers.

Data dropout

reduce the independent

learning units of the network,
diminishing the complexity of
the model, by ignoring some

sets of neuron units of the
model. Implemented in the
training phase, by keeping a

neuron active with a given

probability p, and set to zero
otherwise, becoming p another (a) Standard Neural Net (b) After applying dropout.
hyperparameter of the model.
During testing there is no
dropout applied

FAN UNIVERSITY
ML) oF coLoGNE

Monitoring learning process: what to plot

To monitor the learning process of the network, one should look at how some parameters evolves as the epochs of the

iterations progress. In particular, It is useful to plot as a function of epochs:

Loss function

loss

drawings
indicating the

shapes that
reveal high, low learning rate
low and good

learning rate.

high learning rate

good learning rate

epoch

>

25

10

oS

00

noise in the loss function when the
batch normalization size is low, the

example is from the CIFAR10 dataset.

0 20 &0 “0 %0 100
Epoch 4

1) the loss function: from the shape of the loss function as a function of the epochs we can get

some information on the correctness of the learning rate value we assigned.

[@loEle]

training and validation accuracy
for the case of strong and little
overfitting.

accuracy training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
.

>
epoch
2) the training and validation accuracy: these

two quantities can give indications on the amount
of overfitting of the model.

< /;\v- o
' 5 UNIVERSITY
)5/ OF COLOGNE

3) ratio of the weights: it is another quantity giving indications on the learning rate. It is calculated by taking the ratio of the update values to the
magnitude values of the weights and the reference value indicating a good learning rate is 1.3.

4) activation and gradient distributions per each layer: a useful tool is the visualization of the distributions of the activations or the gradients at each

layer.

Distribution of the activation functions
when initialization is performed using
small random numbers. The mean stays
constant, but the variance gets soon
attenuated to zero. From Stanford
lectures

[@loEle]

3) ratio of the weights: it is another quantity giving indications on the learning rate. It is calculated by taking the ratio of the update values to the
magnitude values of the weights and the reference value indicating a good learning rate is 1.3.

4) activation and gradient distributions per each layer: a useful tool is the visualization of the distributions of the activations or the gradients at each
layer.

Distribution of the activation functions
when initialization is performed using
small random numbers. The mean stays
constant, but the variance gets soon
attenuated to zero. From Stanford

0300
lectures 10004

5) visualization of the first layer: when you work with images, it
can be useful to visualize the features (weights) of the first layer.
Noisy features could reveal unconvergence in the network, wrong
learning rate, or low regularization penalty

Left: noisy weights for the first layer of the neural network, right: smooth features that indicate the training is going

fine, from the C5231n Stanford course in computer vision.

MY UNIVERSITY
)/ OF COLOGNE

[@loEle]

https://cs231n.github.io/neural-networks-3/

Methods to update parameters

Vanilla update

The update is done along the direction
of the negative gradient.

r = xr—learning-ratexdx

Newton’s method

it is a second order method that 1
iterates an update dependent on the &L — L — [Hf[;ﬂ}] vfl[ﬂ;‘)

Hessian matrix, i.e.. a matrix of the
second order partial derivatives of
the function. The gradient vector is
the same seen in the gradient
descent. With the local curvature
given by the Hessian, updates are
more efficient.

[@loEle]

Momentum update

based on interpreting the loss as a potential _ :
S e _ v = pv— learning-rate xdx
energy function, it sets the initial parameters like
to put a particle in an initial position with zero €T+ v
velocity. Then, if we imagine to apply a force to
the particle, this force is the exactly the negative
gradient of the loss function. In this case the
gradient impacts the velocity, and then the
velocity impacting on the position. There’s a new
hyperparameter, that can be associated in the
physical meaning to the role of friction that
dampens the velocity and reduces the kinetic
energy of the system.

=
|

Nesterov momentum

similar to the one of the momentum Tahead = X + L * U
update, but here we threat the future

approximate position as a “look
ahead”.

v = pv— learning-ratexdT peqqd

r=2I+v

< /‘\ 2
(PR UNIVERSITY
1/ OF COLOGNE

Methods to update parameters

Momentum update

based on interpreting the loss as a potential

S e _ v = puv— learning-rate xdx
Vani"a update energy function, it sets the initial parameters like
The update is done along the direction r = i‘t‘!-lﬁﬂfﬂiﬂ%—fﬂtﬂ*ﬂhﬂ to put a particle in an initial position with zero r=x+v
o _ » velocity. Then, if we imagine to apply a force to
of the negative gradient.

the particle, this force is the exactly the negative
gradient of the loss function. In this case the
gradient impacts the velocity, and then the

velocity impacting on the position. There’s a new
it is a second order method that

1 hyperparameter, that can be associated in the
iterates an update dependent on the L& [Hf[;ﬂ}] vf[ﬂ;'} physical meaning to the role of friction that

dampens the velocity and reduces the kinetic

energy of the system.

Newton’s method

Hessian matrix, i.e.. a matrix of the
second order partial derivatives of
the function. The gradient vector is
the same seen in the gradient
descent. With the local curvature
given by the Hessian, updates are
more efficient.

Nesterov momentum

similar to the one of the momentum

Lahead = T+ L * U
update, but here we threat the future

approximate position as a “look U= [v— IEH,I‘IliIlg—I‘ate*d:ﬂahﬁad
ahead”.
good practice in machine learning is to anneal the learning rate over time. You can imagine the learning r=I+v
rate as a sort of level of kinetic energy available in the system. When it is too high, particles bounces
randomly around and cannot reach the minima. However, we need to be careful on how we make the
learning rate decay, because too slow decay can make the system converge too quickly, without finding the
best position. Types of implementation for the learning decay: the step decay, the exponential decay, 1/t
decay. .
‘@@)@@y\ and many more: Adagrad, RMSProp, Adam, L-BFGS

)/ OF COLOGNE

that's it
for today!

OO0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

