
Lecture 2

neural networks and how to monitor the learning process

Claudia Acquistapace

Istitute for Geophysics and Meteorology

University of Cologne

email: cacquist@uni-koeln.de

About the lectures
(and me)

Info about me

and

my Junior research group EXPATS

www.claudiaacquistapace.it

https://expats-ideas4s.com

Slides of the lectures and additional lectures notes with additional material

can be found at:

https://tinyurl.com/teachingUnibo2024

You can always contact me at cacquist@uni-

koeln.de for questions on the lectures or on

whatever (i.e. master thesis, Erasmus, living

in Germany etc), I am happy to help you

We are also on social media, if you want to follow us:

@EXPATS_ideas4s

@EXPATS-ideas4s

The problem of image
classification or... assigning a
label to an image with a
computer

1

Recap from last week

The problem of image
classification or... assigning a
label to an image with a
computer

1

The simplest data driven approach: a linear classifier
and a loss function

2

Recap from last week

The problem of image
classification or... assigning a
label to an image with a
computer

1

The simplest data driven approach: a linear classifier
and a loss function

2

Learning process via optimization (and the various
processes behind it)

3

Recap from last week

1

2

Topics for
today

Activation functions and multilayer perceptron

3 Monitoring the learning process

Artificial neural networks

Activation functions and multilayer perceptron

1

Activation functions and multilayer perceptron

Last time, we discussed a linear classifier computing scores associated to input images as

Multilayer perceptron and neural networks

How can we construct a simple neural network starting from our linear model?

W
parameters or weights

10 x 3072

10 numbers giving

class scores

10 x 1

32 x 32 x 3

3072 in total

3072 x 1 10 x

1

To build a 2 layer neural network, we introduce a non-linearity in this system, for example:

MAX

To build a 2 layer neural network, we introduce a non-linearity in this system, for example:

W1

[50 x 2073]

W2

[10 x 50]

X

[2073 X 1]

class scores

[10]

only positive values of

W1x pass

output gate of W1x

becomes input of

another gate W2

The non-linearity introduced is often called

“activation function”.

These functions take the input number and apply

some type of mathematical operations on it.

They introduce a non-linearity which is conditioned

by a threshold value

Activation functions

What are typical functional forms for f?

Activation functions

Figure source: https://sefiks.com/tag/activation-function/

Activation functions

Threshold: x >=0

Figure source: https://sefiks.com/tag/activation-function/

Activation functions

Threshold: x >= 0

Figure source: https://sefiks.com/tag/activation-function/

Example of RELU in action

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum

1) They help in keeping the output of a neuron within a certain range we decide

based on our needs, avoiding computational issues caused by numbers growing

to extremely large values in the network.

Why do we need them?

1) They help in keeping the output of a neuron within a certain range we decide

based on our needs, avoiding computational issues caused by numbers growing

to extremely large values in the network.

Why do we need them?

2) They add non-linearity to the network. If the model needs to learn non-

linear patterns, like for example in classification tasks, then specific non-

linear layers need to be added to the network.

1) They help in keeping the output of a neuron within a certain range we decide

based on our needs, avoiding computational issues caused by numbers growing

to extremely large values in the network.

Why do we need them?

During backpropagation (gradient descent), gradients get multiplied with the activation functions. If the activation functions re-

scale the input into a range of values between 0 and 1, this means that values of the gradients get strongly reduced.

In general, gradients tend to vanish because of the depth of the network and this problem goes under the name of “vanishing

gradient problem”.

2) They add non-linearity to the network. If the model needs to learn non-

linear patterns, like for example in classification tasks, then specific non-

linear layers need to be added to the network.

One slide on history

It all started with a model of the

brain... (McCulloch and Pitts)

Linear model with

positive/negative outputs given

input and weights

1940'

The model was not

learning unless you

fixed weights

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

One slide on history

It all started with a model of the

brain... (McCulloch and Pitts)

Linear model with

positive/negative outputs given

input and weights

1940'

The model was not

learning unless you

fixed weights

1950'

Rosenblatt extended the model to

learn weights to generate the

output: he created the perceptron,

initially intended for image

recognition, people think it could

represent any circuit and logic.

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

One slide on history

It all started with a model of the

brain... (McCulloch and Pitts)

Linear model with

positive/negative outputs given

input and weights

1940'

The model was not

learning unless you

fixed weights

1950'

Rosenblatt extended the model to

learn weights to generate the

output: he created the perceptron,

initially intended for image

recognition, people think it could

represent any circuit and logic.

Perceptron combines inputs in a sum and, if the weighted

sum exceeds a threshold, the neuron produces the output.

T

w1
x1

x2

x3

w2

w3

Y

activation

function (sigmoid in

the first model)

Perceptron is used for binary classification with

such descrete output

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

One slide on history

It all started with a model of the

brain... (McCulloch and Pitts)

Linear model with

positive/negative outputs given

input and weights

1940'

The model was not

learning unless you

fixed weights

1950'

Rosenblatt extended the model to

learn weights to generate the

output: he created the perceptron,

initially intended for image

recognition, people think it could

represent any circuit and logic.

Perceptron combines inputs in a sum and, if the weighted

sum exceeds a threshold, the neuron produces the output.

T

w1
x1

x2

x3

w2

w3

Y

activation

function (sigmoid in

the first model)

Perceptron is used for binary classification with

such descrete output

1969'
Minsky and Papert showed it couldn’t represent the XOR gate, and

highlighted the fact that Perceptron, with only one neuron, can’t be

applied to non-linear data.

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

https://en.wikipedia.org/wiki/XOR_gate

Multi-layer perceptron

The Multilayer Perceptron was developed to tackle this limitation.

It is a neural network where the mapping between inputs and output is non-linear.

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum

Model set up

The Multilayer Perceptron is a neural network where the mapping between

inputs and output is non-linear and it is our score function

The activation function f can be chosen, in

our case we take RELU

The multilayer perceptron gives us a score y

Weights are initialized randomly

Model set up

We define as loss function the Mean

Squared error

The Multilayer Perceptron is a neural network where the mapping between

inputs and output is non-linear and it is our score function

The activation function f can be chosen, in

our case we take RELU

The multilayer perceptron gives us a score y

Weights are initialized randomly

Model set up

We define as loss function the Mean

Squared error

We add the

regularisation term

(regularization loss)

The Multilayer Perceptron is a neural network where the mapping between

inputs and output is non-linear and it is our score function

The activation function f can be chosen, in

our case we take RELU

The multilayer perceptron gives us a score y

Weights are initialized randomly

Model set up

We define as loss function the Mean

Squared error

We add the

regularisation term

(regularization loss)

Weights are learned via backpropagation following gradient

descent.

What does that mean? calculating the gradient of the Mean

Squared error across all input/output pairs and unpdating

weights with the values obtained with the gradients,

The Multilayer Perceptron is a neural network where the mapping between

inputs and output is non-linear and it is our score function

The activation function f can be chosen, in

our case we take RELU

The multilayer perceptron gives us a score y

Weights are initialized randomly

Example of loss computation and back propagation

normalized input values

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast

precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation

is 88% with such values (or y label)

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum

Example of loss computation and back propagation

normalized input values

randomly initialized weights Wi

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast

precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation

is 88% with such values (or y label)

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum

Calculating the loss (mean squared error)

we get 0.2119 which is too big! This is

because the value we obtain, 22.9% is too

far from the value expected of 88%.

normalized input values

randomly initialized weights Wi

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast

precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation

is 88% with such values (or y label)

Example of loss computation and back propagation

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast

precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation

is 88% with such values (or y label)

Calculating the loss (mean squared error)

we get 0.2119 which is too big! This is

because the value we obtain, 22.9% is too

far from the value expected of 88%.

normalized input values

randomly initialized weights Wi

Example of loss computation and back propagation

We do gradient descent, to change the weights to get a lower MSE

new updated
weight

old
weight gradient of Loss with

respect to the weight

times the learning rate lr

Figure courtesy of Asma Semcheddine

and Prof. Dr. Martin Schulz, Jülich

Forschungzentrum

Calculating the gradient of the loss with

respect to the weight W31

Example of loss computation and back propagation

i = 3

j = 1

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum

We calculate the updated weight for the weight w31

0.3033201

Calculating the gradient of the loss with

respect to the weight W31

Example of loss computation and back propagation

i = 3

j = 1

Figure courtesy of Asma Semcheddine

and Prof. Dr. Martin Schulz, Jülich

Forschungzentrum

We calculate the updated weight for the weight w31

Updating all weights we can re-calculate the loss with the updated weights

The value we obtain is slightly better, a

bit closer to 0.88

More iterations are needed!!

Figure courtesy of Asma

Semcheddine and Prof. Dr. Martin

Schulz, Jülich Forschungzentrum

Fully connected layers: artificial neural networks

1

Fully connected layer

2 layer fully connected neural network.

Figure re-elaborated based on the

material of the lecture series of the

Stanford University’s CS231n course.

no connections among neurons of the same layer.

http://cs231n.stanford.edu

Neural network architectures

A regular neural network

receives an input and

transforms it through a series

of hidden layers made of

neurons.

Neural network architectures

A regular neural network

receives an input and

transforms it through a series

of hidden layers made of

neurons.

Each neuron is fully connected to

the neurons of the previous layer,

but it does not share any

connection with the other neurons

of his layer.

Neural network architectures

A regular neural network

receives an input and

transforms it through a series

of hidden layers made of

neurons.

Each neuron is fully connected to

the neurons of the previous layer,

but it does not share any

connection with the other neurons

of his layer.

The last connected

layer is called the

output layer; When the

goal is to perform a

classification, it

contains simply the

class scores.

Neural network architectures

size of the neural network: number of neurons in the layers of the network (as

said before, excluding the input layer) or

 the number of parameters.

Monitoring the learning process

(what to do to try to avoid problems)

2

Pre-processing of the data

1) Normalization of the input data

normalization brings all the features of the input on the same scale. But why we need it?

Pre-processing of the data

1) Normalization of the input data

normalization brings all the features of the input on the same scale. But why we need it?

Imagine that we have in particular two features having very

different scales. Also the weights associated to the features,

since the network output is the linear combination of the

feature vectors, will differ very much in scale,

large updates on the directions

with the largest weights, and much

smaller updates on the direction of

the smallest feature, gradient

oscillates a lot and needs more

steps to converge

Pre-processing of the data

1) Normalization of the input data

normalization brings all the features of the input on the same scale. But why we need it?

Figure 2.1: a) Example of gradient descent for two un-normalized features and b) gradient descent

when the features w1 and w2 are normalized. The graphics are taken from the wonderful article on

the batch normalization from Ketan Doshi

features are normalized, the

contributions to the gradient

during gradient descent will be

of the same order, generating a

more homogeneous descent

Imagine that we have in particular two features having very

different scales. Also the weights associated to the features,

since the network output is the linear combination of the

feature vectors, will differ very much in scale,

large updates on the directions

with the largest weights, and much

smaller updates on the direction of

the smallest feature, gradient

oscillates a lot and needs more

steps to converge

1) Normalization of the input data

Figure 2.2: The pre-processing methods (figure from the slides of the lecture series of the Stanford course on

Computer vision with CNN.

 3 main types of pre-processing

Zero-centering. subtracting the mean from each of the individual

features of the data. It concides with the operation of centering the

data around the origin. With images, it is common to subtract a

single mean value from all pixels of the image (as done in AlexNet),

or to do this operation for each of the RGB channels (as done in

VGGnet).

Normalization. This is the process that brings data dimensions all on

the same scale, approximately. It is obtained by first zero-centering

the data, and then by dividing each dimension by its standard

deviation. In case of images, this type of pre-processing is not really

needed because pixels scales are relatively equal (in the range 0-

255).

1) Normalization of the input data

Figure 2.2: The pre-processing methods (figure from the slides of the lecture series of the Stanford course on

Computer vision with CNN.

 3 main types of pre-processing

Zero-centering. subtracting the mean from each of the individual

features of the data. It concides with the operation of centering the

data around the origin. With images, it is common to subtract a

single mean value from all pixels of the image (as done in AlexNet),

or to do this operation for each of the RGB channels (as done in

VGGnet).

Normalization. This is the process that brings data dimensions all on

the same scale, approximately. It is obtained by first zero-centering

the data, and then by dividing each dimension by its standard

deviation. In case of images, this type of pre-processing is not really

needed because pixels scales are relatively equal (in the range 0-

255).

PCA and whitening. Data are centered as described above, but in this

case we then calculate the covariance matrix that will give

information about the correlation structure of the data. Then we

apply the singular value decomposition to obtain the eigenvectors

and array of singular values. The transformation of data covariance

into the identity matrix corresponds to squeeze the data in an

isotropic bubble (PCA dimensionality reduction) -- can greatly

amplify noise

1) Normalization of the input data

2) Weight initialization

Option 1) set all weights initially to 0
the network will not learn because there is no simmetry breaking: all neurons will do the same thing,

and they will all give the same gradient, so they will be updated in the same way.

2) Weight initialization

Option 1) set all weights initially to 0
the network will not learn because there is no simmetry breaking: all neurons will do the same thing,

and they will all give the same gradient, so they will be updated in the same way.

Option 2) set of small random numbers.

the simmetry would be broken, but

the network might not work for deep

architectures Distribution of the activation functions when initialization is performed using small random numbers. The mean stays

constant, but the variance gets soon attenuated to zero. From Stanford lectures

2) Weight initialization

Option 1) set all weights initially to 0
the network will not learn because there is no simmetry breaking: all neurons will do the same thing,

and they will all give the same gradient, so they will be updated in the same way.

Option 2) set of small random numbers.

the simmetry would be broken, but

the network might not work for deep

architectures Distribution of the activation functions when initialization is performed using small random numbers. The mean stays

constant, but the variance gets soon attenuated to zero. From Stanford lectures

Option 3) “Xavier initialization” [Glorot et al., 2010]

Reasonable initialization based on

mathematical derivation, assumes

linear activations but with RELU it

breaks)

Distribution of the activation functions for Xavier initialization with linear activation (top) and with ReLU non linear

activations (bottom)

2) Weight initialization

Option 1) set all weights initially to 0
the network will not learn because there is no simmetry breaking: all neurons will do the same thing,

and they will all give the same gradient, so they will be updated in the same way.

Option 2) set of small random numbers.

the simmetry would be broken, but

the network might not work for deep

architectures Distribution of the activation functions when initialization is performed using small random numbers. The mean stays

constant, but the variance gets soon attenuated to zero. From Stanford lectures

Option 3) “Xavier initialization” [Glorot et al., 2010]

Reasonable initialization based on

mathematical derivation, assumes

linear activations but with RELU it

breaks)

Option 4) He et al., 2015

accounted for non linearities by

modifying a scaling factor and making it

work with Relu activations Distribution of the activation functions for Xavier initialization with linear activation (top) and with ReLU non linear

activations (bottom)

hidden layer 1 hidden layer 2 hidden layer 3activation 1 activation 2
batch

normali zation

1

batch

normalization

2

activation 2

(BN)

activation 2

(BN)

hidden layer 1 hidden layer 2 hidden layer 3activation 1
activation 2

Network without batch normalization

Network with batch normalization

3) Batch normalization

What is batch normalization?

Batch normalization comes in the network as an additional layer that is

usually added to other blocks of the architecture, like the convolutional or

the fully connected layer.

hidden layer 1 hidden layer 2 hidden layer 3activation 1 activation 2
batch

normali zation

1

batch

normalization

2

activation 2

(BN)

activation 2

(BN)

hidden layer 1 hidden layer 2 hidden layer 3activation 1
activation 2

Network without batch normalization

Network with batch normalization

Covariate shift occurs when the model is trained with data

having a very different distribution with respect to the data which

are used for inference, slowing down convergence.

Batch Normalization helps the network train faster and achieve

higher accuracy.

3) Batch normalization

Why does batch normalization help in training neural networks?

What is batch normalization?

Batch normalization comes in the network as an additional layer that is

usually added to other blocks of the architecture, like the convolutional or

the fully connected layer.

1) It reduces the internal covariate shift.

From the batch

optimization paper (Ioffe

and Szegedy, 2015): (a) (b,

c) The evolution of input

distributions to a typical

sigmoid, over the course of

training, shown as {15, 50,

85}the percentiles. Batch

Normalization makes the

distribution more stable

and reduces the internal

covariate shift

https://arxiv.org/abs/1502.03167v3

hidden layer 1 hidden layer 2 hidden layer 3activation 1 activation 2
batch

normali zation

1

batch

normalization

2

activation 2

(BN)

activation 2

(BN)

hidden layer 1 hidden layer 2 hidden layer 3activation 1
activation 2

Network without batch normalization

Network with batch normalization

3) Batch normalization

Why does batch normalization help in training neural networks?

What is batch normalization?

Batch normalization comes in the network as an additional layer that is

usually added to other blocks of the architecture, like the convolutional or

the fully connected layer.

1) It reduces the internal covariate shift. 2) It smooths the loss function and the gradient.

From the batch

optimization paper (Ioffe

and Szegedy, 2015): (a) (b,

c) The evolution of input

distributions to a typical

sigmoid, over the course of

training, shown as {15, 50,

85}the percentiles. Batch

Normalization makes the

distribution more stable

and reduces the internal

covariate shift

Smoothens the loss landscape

by changing the distribution of

the weights of the networks. In

this way, steps of gradient

descent can be larger in a given

direction and learning rate can

be higher. If you want to know

more about this aspect, check

the paper from Li et al., 2018.

Covariate shift occurs when the model is trained with data

having a very different distribution with respect to the data which

are used for inference, slowing down convergence.

Batch Normalization helps the network train faster and achieve

higher accuracy.

https://arxiv.org/abs/1502.03167v3

How does batch normalization practically work (does the normalization task)?

Parameters of the batch normalization layer:

• two learnable parameters (beta and gamma)

• two non-learnable parameters (mean moving average

and variance moving average)

During training feedforward

phase, we provide as input

a mini-batch of data, i.e. M

samples of the N features
M activations

batch normalization M activations BN

How does batch normalization practically work (does the normalization task)?

Parameters of the batch normalization layer:

• two learnable parameters (beta and gamma)

• two non-learnable parameters (mean moving average

and variance moving average)

During training feedforward

phase, we provide as input

a mini-batch of data, i.e. M

samples of the N features
M activations

batch normalization M activations BN

MINIBATCH

OF SIZE M:

contains M

samples of N

features

BN output

CALCULATING MEAN

AND STD

NORMALIZATION SCALING AND

SHIFTING

CALCULATING MOVING MEAN AND

VARIANCE

Representation of the

operations done in the batch

layer. The figure is based on

the figure presented in the

article on Batch normalization

explained from Ketan Doshi.

Operations the batch does in training

In addition to these, used to generate

the output, the layer also stores a

running count of the exponential

moving average of the mean and

variance, obtaining an EMA at the end

of the training, that we will then use

in the inference phase

scaling and shifting is what

allows the batch to shift the

output to a different mean and

standard deviationthe parameters beta

and gamma are

learned in the

training process, like

all weights and the

batch is optimizing

them during training

to fit the values to

those giving the best

predictions.

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

1 sample in

input BN output

How does batch normalization practically work (does the normalization task)?

CALCULATING MEAN

AND STD

NORMALIZATION SCALING AND

SHIFTING

CALCULATING MOVING MEAN AND

VARIANCE

Representation of the

operations done in the batch

layer. The figure is based on

the figure presented in the

article on Batch normalization

explained from Ketan Doshi.

Operations the batch does in inference
During inference, after the training, the

activations flow in the same architecture. In this

case, in the batch layer, the normalization is

done using the two moving average parameters,

that have been calculated and stored during the

training

While ideally we could have calculated and saved the mean and variance for all the data in training, this operation would have been very expensive.

Moving average is a good proxy and it is more efficient because the calculation is incremental.

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

Data augmentation

L1/L2 regularization

Max norm constraints

Data dropout

In classification tasks, this can be easily

done by manipulating the input images

using some transformations like rotation,

rescaling or shifting

In L1 regularization, we add to the cost function the term

, which allows all the weights to decay to zero. It penalizes

the sum of the absolute values of the weights, and it is

robust to outliers.

L2 regularization instead we add the term

which penalizes the sum of the square

values of the weights (the peaky weight

vectors) and preferring the diffuse ones,

but it is less solid to outliers.

avoid overfitting by limiting the

values of the weights in the model

so that they modulus is less than a

fixed threshold. Typically, after

parameter update, the vector of

weights is forced to satisfy

reduce the independent

learning units of the network,

diminishing the complexity of

the model, by ignoring some

sets of neuron units of the

model. Implemented in the

training phase, by keeping a

neuron active with a given

probability p, and set to zero

otherwise, becoming p another

hyperparameter of the model.

During testing there is no

dropout applied

Methods to avoid overfitting

To monitor the learning process of the network, one should look at how some parameters evolves as the epochs of the

iterations progress. In particular, It is useful to plot as a function of epochs:

Loss function

drawings

indicating the

shapes that

reveal high,

low and good

learning rate.

noise in the loss function when the

batch normalization size is low, the

example is from the CIFAR10 dataset.

training and validation accuracy

for the case of strong and little

overfitting.

1) the loss function: from the shape of the loss function as a function of the epochs we can get

some information on the correctness of the learning rate value we assigned.

2) the training and validation accuracy: these

two quantities can give indications on the amount

of overfitting of the model.

Monitoring learning process: what to plot

3) ratio of the weights: it is another quantity giving indications on the learning rate. It is calculated by taking the ratio of the update values to the

magnitude values of the weights and the reference value indicating a good learning rate is 1.3.

4) activation and gradient distributions per each layer: a useful tool is the visualization of the distributions of the activations or the gradients at each

layer.

Distribution of the activation functions

when initialization is performed using

small random numbers. The mean stays

constant, but the variance gets soon

attenuated to zero. From Stanford

lectures

3) ratio of the weights: it is another quantity giving indications on the learning rate. It is calculated by taking the ratio of the update values to the

magnitude values of the weights and the reference value indicating a good learning rate is 1.3.

4) activation and gradient distributions per each layer: a useful tool is the visualization of the distributions of the activations or the gradients at each

layer.

5) visualization of the first layer: when you work with images, it

can be useful to visualize the features (weights) of the first layer.

Noisy features could reveal unconvergence in the network, wrong

learning rate, or low regularization penalty

Left: noisy weights for the first layer of the neural network, right: smooth features that indicate the training is going

fine, from the CS231n Stanford course in computer vision.

Distribution of the activation functions

when initialization is performed using

small random numbers. The mean stays

constant, but the variance gets soon

attenuated to zero. From Stanford

lectures

https://cs231n.github.io/neural-networks-3/

 The update is done along the direction

of the negative gradient.

based on interpreting the loss as a potential

energy function, it sets the initial parameters like

to put a particle in an initial position with zero

velocity. Then, if we imagine to apply a force to

the particle, this force is the exactly the negative

gradient of the loss function. In this case the

gradient impacts the velocity, and then the

velocity impacting on the position. There’s a new

hyperparameter, that can be associated in the

physical meaning to the role of friction that

dampens the velocity and reduces the kinetic

energy of the system.

Momentum update

Vanilla update

Nesterov momentum

similar to the one of the momentum

update, but here we threat the future

approximate position as a “look

ahead”.

Newton’s method

it is a second order method that

iterates an update dependent on the

Hessian matrix, i.e.. a matrix of the

second order partial derivatives of

the function. The gradient vector is

the same seen in the gradient

descent. With the local curvature

given by the Hessian, updates are

more efficient.

Methods to update parameters

 The update is done along the direction

of the negative gradient.

based on interpreting the loss as a potential

energy function, it sets the initial parameters like

to put a particle in an initial position with zero

velocity. Then, if we imagine to apply a force to

the particle, this force is the exactly the negative

gradient of the loss function. In this case the

gradient impacts the velocity, and then the

velocity impacting on the position. There’s a new

hyperparameter, that can be associated in the

physical meaning to the role of friction that

dampens the velocity and reduces the kinetic

energy of the system.

Momentum update

Vanilla update

Nesterov momentum

similar to the one of the momentum

update, but here we threat the future

approximate position as a “look

ahead”.

Newton’s method

it is a second order method that

iterates an update dependent on the

Hessian matrix, i.e.. a matrix of the

second order partial derivatives of

the function. The gradient vector is

the same seen in the gradient

descent. With the local curvature

given by the Hessian, updates are

more efficient.

good practice in machine learning is to anneal the learning rate over time. You can imagine the learning

rate as a sort of level of kinetic energy available in the system. When it is too high, particles bounces

randomly around and cannot reach the minima. However, we need to be careful on how we make the

learning rate decay, because too slow decay can make the system converge too quickly, without finding the

best position. Types of implementation for the learning decay: the step decay, the exponential decay, 1/t

decay.
and many more: Adagrad, RMSProp, Adam, L-BFGS

Methods to update parameters

that’s it
for today!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

