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Artificial neural networks
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Activation functions and multilayer perceptron 

Last time, we discussed a linear classifier computing scores associated to input images as



Multilayer perceptron and neural networks

How can we construct a simple neural network starting from our linear model?

W
parameters or weights

10 x 3072

10 numbers giving 

class scores 

10 x 1

32 x 32 x 3

3072 in total

3072 x 1 10 x 

1



To build a 2 layer neural network, we introduce a non-linearity in this system, for example:

 



MAX

To build a 2 layer neural network, we introduce a non-linearity in this system, for example:

 

W1

[50 x 2073]

W2

[10 x 50]

X

[2073 X 1]

class scores

[10]

only positive values of 

W1x pass 

output gate of W1x 

becomes input of 

another gate W2



The non-linearity introduced is often called 

“activation function”. 

These functions take the input number and apply 

some type of mathematical operations on it.

They introduce a non-linearity which is conditioned 

by a threshold value

 

Activation functions

What are typical functional forms for f?



Activation functions

Figure source: https://sefiks.com/tag/activation-function/



Activation functions

Threshold: x >=0

Figure source: https://sefiks.com/tag/activation-function/



Activation functions

Threshold: x >= 0 

Figure source: https://sefiks.com/tag/activation-function/



Example of RELU in action

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum
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1) They help in keeping the output of a neuron within a certain range we decide 

based on our needs, avoiding computational issues caused by numbers growing 

to extremely large values in the network.

Why do we need them?

During backpropagation (gradient descent), gradients get multiplied with the activation functions. If the activation functions re-

scale the input into a range of values between 0 and 1, this means that values of the gradients get strongly reduced. 

In general, gradients tend to vanish because of the depth of the network and this problem goes under the name of “vanishing 

gradient problem”.

2) They add non-linearity to the network. If the model needs to learn non-

linear patterns, like for example in classification tasks, then specific non-

linear layers need to be added to the network.
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positive/negative outputs given 
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1940'

The model was not 

learning unless you 

fixed weights

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
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It all started with a model of the 

brain... (McCulloch and Pitts)

Linear model with 

positive/negative outputs given 

input and weights

1940'

The model was not 

learning unless you 

fixed weights

1950'

Rosenblatt extended the model to 

learn weights to generate the 

output: he created the perceptron, 

initially intended for image 

recognition, people think it could 

represent any circuit and logic.

Perceptron combines inputs in a sum and, if the weighted 

sum exceeds a threshold, the neuron produces the output.

T

w1
x1

x2

x3

w2

w3

Y

activation 

function (sigmoid in 

the first model)

Perceptron is used for binary classification with 

such descrete output 

1969'
Minsky and Papert showed it couldn’t represent the XOR gate, and 

highlighted the fact that Perceptron, with only one neuron, can’t be 

applied to non-linear data.

source: Carolina Bento, https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

https://en.wikipedia.org/wiki/XOR_gate


Multi-layer perceptron

The Multilayer Perceptron was developed to tackle this limitation. 

It is a neural network where the mapping between inputs and output is non-linear.

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum
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The Multilayer Perceptron is a neural network where the mapping between 
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The activation function f can be chosen, in 

our case we take RELU

The multilayer perceptron gives us a score y

Weights are initialized randomly
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Model set up

We define as loss function the Mean 

Squared error

We add the 

regularisation term 

(regularization loss)

Weights are learned via backpropagation following gradient 

descent. 

What does that mean? calculating the gradient of the Mean 

Squared error across all input/output pairs and unpdating 

weights with the values obtained with the gradients, 

The Multilayer Perceptron is a neural network where the mapping between 

inputs and output is non-linear and it is our score function

The activation function f can be chosen, in 

our case we take RELU

The multilayer perceptron gives us a score y

Weights are initialized randomly



Example of loss computation and back propagation

normalized input values

Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast 

precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation 

is 88% with such values (or y label)

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum
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Calculating the loss (mean squared error)

we get  0.2119 which is too big! This is 

because the value we obtain, 22.9% is too 

far from the value expected of 88%.
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Immagine to have a neural network with 3 input nodes, 2 hidden nodes, and 1 output node to forecast 

precipitation based on temperature, wind speed and relative humidity. Our target probability of precipitation 

is 88% with such values (or y label)

Calculating the loss (mean squared error)

we get  0.2119 which is too big! This is 

because the value we obtain, 22.9% is too 

far from the value expected of 88%.

normalized input values

randomly initialized weights Wi

Example of loss computation and back propagation

We do gradient descent, to change the weights to get a lower MSE

new updated 
weight

old 
weight gradient of Loss with 

respect to the weight 

times the learning rate lr

Figure courtesy of Asma Semcheddine 

and Prof. Dr. Martin Schulz, Jülich 

Forschungzentrum



Calculating the gradient of the loss with 

respect to the weight W31

Example of loss computation and back propagation

i = 3

j = 1

Figure courtesy of Asma Semcheddine and Prof. Dr. Martin Schulz, Jülich Forschungzentrum

We calculate the updated weight for the weight w31



0.3033201

Calculating the gradient of the loss with 

respect to the weight W31

Example of loss computation and back propagation

i = 3

j = 1

Figure courtesy of Asma Semcheddine 

and Prof. Dr. Martin Schulz, Jülich 

Forschungzentrum

We calculate the updated weight for the weight w31



Updating all weights we can re-calculate the loss with the updated weights

The value we obtain is slightly better, a 

bit closer to 0.88

More iterations are needed!!

Figure courtesy of Asma 

Semcheddine and Prof. Dr. Martin 

Schulz, Jülich Forschungzentrum



Fully connected layers: artificial neural networks
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Fully connected layer

2 layer fully connected neural network. 

Figure re-elaborated based on the 

material of the lecture series of the 

Stanford University’s CS231n course.

no connections among neurons of the same layer. 

http://cs231n.stanford.edu
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Neural network architectures

A regular neural network 

receives an input and 

transforms it through a series 

of hidden layers made of 

neurons. 

Each neuron is fully connected to 

the neurons of the previous layer, 

but it does not share any 

connection with the other neurons 

of his layer. 

The last connected 

layer is called the 

output layer; When the 

goal is to perform a 

classification, it 

contains simply the 

class scores.



Neural network architectures

size of the neural network: number of neurons in the layers of the network (as 

said before, excluding the input layer) or

 the number of parameters. 



Monitoring the learning process

(what to do to try to avoid problems)

2
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Pre-processing of the data

1) Normalization of the input data

normalization brings all the features of the input on the same scale. But why we need it?

Figure 2.1: a) Example of gradient descent for two un-normalized features and b) gradient descent 

when the features w1 and w2 are normalized. The graphics are taken from the wonderful article on 

the batch normalization from Ketan Doshi

features are normalized, the 

contributions to the gradient 

during gradient descent will be 

of the same order, generating a 

more homogeneous descent 

Imagine that we have in particular two features having very 

different scales.  Also the weights associated to the features, 

since the network output is the linear combination of the 

feature vectors, will differ very much in scale,

large updates on the directions 

with the largest weights, and much 

smaller updates on the direction of 

the smallest feature, gradient 

oscillates a lot and needs more 

steps to converge 



1) Normalization of the input data



Figure 2.2: The pre-processing methods (figure from the slides of the lecture series of the Stanford course on 

Computer vision with CNN.

 3 main types of pre-processing

Zero-centering. subtracting the mean from each of the individual 

features of the data. It concides with the operation of centering the 

data around the origin. With images, it is common to subtract a 

single mean value from all pixels of the image (as done in AlexNet), 

or to do this operation for each of the RGB channels (as done in 

VGGnet).

Normalization. This is the process that brings data dimensions all on 

the same scale, approximately. It is obtained by first zero-centering 

the data, and then by dividing each dimension by its standard 

deviation. In case of images, this type of pre-processing is not really 

needed because pixels scales are relatively equal ( in the range 0-

255).

1) Normalization of the input data



Figure 2.2: The pre-processing methods (figure from the slides of the lecture series of the Stanford course on 

Computer vision with CNN.

 3 main types of pre-processing

Zero-centering. subtracting the mean from each of the individual 

features of the data. It concides with the operation of centering the 

data around the origin. With images, it is common to subtract a 

single mean value from all pixels of the image (as done in AlexNet), 

or to do this operation for each of the RGB channels (as done in 

VGGnet).

Normalization. This is the process that brings data dimensions all on 

the same scale, approximately. It is obtained by first zero-centering 

the data, and then by dividing each dimension by its standard 

deviation. In case of images, this type of pre-processing is not really 

needed because pixels scales are relatively equal ( in the range 0-

255).

PCA and whitening. Data are centered as described above, but in this 

case we then calculate the covariance matrix that will give 

information about the correlation structure of the data. Then we 

apply the singular value decomposition to obtain the eigenvectors 

and array of singular values. The transformation of data covariance 

into the identity matrix corresponds to squeeze the data in an 

isotropic bubble (PCA dimensionality reduction) -- can greatly 

amplify noise

1) Normalization of the input data
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Option 1) set all weights initially to 0 
the network will not learn because there is no simmetry breaking: all neurons will do the same thing, 

and they will all give the same gradient, so they will be updated in the same way. 
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2) Weight initialization

Option 1) set all weights initially to 0 
the network will not learn because there is no  simmetry breaking: all neurons will do the same thing, 

and they will all give the same gradient, so they will be updated in the same way. 

Option 2) set of small random numbers.

the simmetry would be broken, but 

the network might not work for deep 

architectures Distribution of the activation functions when initialization is performed using small random numbers. The mean stays 

constant, but the variance gets soon attenuated to zero. From Stanford lectures 

Option 3) “Xavier initialization” [Glorot et al., 2010]

Reasonable initialization based on 

mathematical derivation, assumes 

linear activations but with RELU it 

breaks)

Option 4) He et al., 2015

accounted for non linearities by 

modifying a scaling factor and making it 

work with Relu activations Distribution of the activation functions for Xavier initialization with linear activation (top) and with ReLU non linear 

activations (bottom)
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3) Batch normalization

Why does batch normalization help in training neural networks? 

What is batch normalization?

Batch normalization comes in the network as an additional layer that is 

usually added to other blocks of the architecture, like the convolutional or 

the fully connected layer. 

1) It reduces the internal covariate shift.

From the batch 

optimization paper (Ioffe 

and Szegedy, 2015): (a)  (b, 

c) The evolution of input 

distributions to a typical 

sigmoid, over the course of 

training, shown as {15, 50, 

85}the percentiles. Batch 

Normalization makes the 

distribution more stable 

and reduces the internal 

covariate shift

https://arxiv.org/abs/1502.03167v3
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3) Batch normalization

Why does batch normalization help in training neural networks? 

What is batch normalization?

Batch normalization comes in the network as an additional layer that is 

usually added to other blocks of the architecture, like the convolutional or 

the fully connected layer. 

1) It reduces the internal covariate shift. 2) It smooths the loss function and the gradient.

From the batch 

optimization paper (Ioffe 

and Szegedy, 2015): (a)  (b, 

c) The evolution of input 

distributions to a typical 

sigmoid, over the course of 

training, shown as {15, 50, 

85}the percentiles. Batch 

Normalization makes the 

distribution more stable 

and reduces the internal 

covariate shift

Smoothens the loss landscape 

by changing the distribution of 

the weights of the networks. In 

this way, steps of gradient 

descent can be larger in a given 

direction and learning rate can 

be higher. If you want to know 

more about this aspect, check 

the paper from Li et al., 2018.

Covariate shift occurs when the model is trained with data 

having a very different distribution with respect to the data which 

are used for inference, slowing down convergence.

Batch Normalization helps the network train faster and achieve 

higher accuracy. 

https://arxiv.org/abs/1502.03167v3


How does batch normalization practically work (does the normalization task)?

Parameters of the batch normalization layer:

• two learnable parameters (beta and gamma)

• two non-learnable parameters (mean moving average 

and variance moving average)

During training feedforward 

phase, we provide as input 

a mini-batch of data,  i.e. M 

samples of the N features 
M activations

batch normalization M activations BN



How does batch normalization practically work (does the normalization task)?

Parameters of the batch normalization layer:

• two learnable parameters (beta and gamma)

• two non-learnable parameters (mean moving average 

and variance moving average)

During training feedforward 

phase, we provide as input 

a mini-batch of data,  i.e. M 

samples of the N features 
M activations

batch normalization M activations BN

MINIBATCH 

OF SIZE M: 

contains M 

samples of N 

features 

BN output

CALCULATING MEAN 

AND STD

NORMALIZATION SCALING AND 

SHIFTING

CALCULATING MOVING MEAN AND 

VARIANCE

Representation of the 

operations done in the batch 

layer. The figure is based on 

the figure presented in the 

article on Batch normalization 

explained from Ketan Doshi.

Operations the batch does in training

In addition to these, used to generate 

the output, the layer also stores a 

running count of the exponential 

moving average of the mean and 

variance, obtaining an EMA at the end 

of the training, that we will then use 

in the inference phase 

scaling and shifting is what 

allows the batch to shift the 

output to a different mean and 

standard deviationthe parameters beta 

and gamma are 

learned in the 

training process, like 

all weights and the 

batch is optimizing 

them during training 

to fit the values to 

those giving the best 

predictions.

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739


1 sample in 

input BN output

How does batch normalization practically work (does the normalization task)?

CALCULATING MEAN 

AND STD

NORMALIZATION SCALING AND 

SHIFTING

CALCULATING MOVING MEAN AND 

VARIANCE

Representation of the 

operations done in the batch 

layer. The figure is based on 

the figure presented in the 

article on Batch normalization 

explained from Ketan Doshi.

Operations the batch does in inference
During inference, after the training, the 

activations flow in the same architecture. In this 

case, in the batch layer, the normalization is 

done using the two moving average parameters, 

that have been calculated and stored during the 

training

While ideally we could have calculated and saved the mean and variance for all the data in training, this operation would have been very expensive. 

Moving average is a good proxy and it is more efficient because the calculation is incremental. 

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739


Data augmentation 

L1/L2 regularization

Max norm constraints

Data dropout 

In classification tasks, this can be easily 

done by manipulating the input images 

using some transformations like rotation, 

rescaling or shifting

In L1 regularization, we add to the cost function the term              

, which allows all the weights to decay to zero. It penalizes 

the sum of the absolute values of the weights, and it is 

robust to outliers.

L2 regularization instead we add the term

which penalizes the sum of the square 

values of the weights (the peaky weight 

vectors) and preferring the diffuse ones, 

but it is less solid to outliers. 

avoid overfitting by limiting the 

values of the weights in the model 

so that they modulus is less than a 

fixed threshold. Typically, after 

parameter update, the vector of 

weights is forced to satisfy

reduce the independent 

learning units of the network, 

diminishing the complexity of 

the model, by ignoring some 

sets of neuron units of the 

model. Implemented in the 

training phase, by keeping a 

neuron active with a given 

probability p, and set to zero 

otherwise, becoming p another 

hyperparameter of the model. 

During testing there is no 

dropout applied

Methods to avoid overfitting



To monitor the learning process of the network, one should look at how some parameters evolves as the epochs of the 

iterations progress. In particular, It is useful to plot as a function of epochs:

Loss function 

drawings 

indicating the 

shapes that 

reveal high, 

low and good 

learning rate. 

noise in the loss function when the 

batch normalization size is low, the 

example is from the CIFAR10 dataset.

training and validation accuracy 

for the case of strong and little 

overfitting.

1) the loss function: from the shape of the loss function as a function of the epochs we can get 

some information on the correctness of the learning rate value we assigned. 

2) the training and validation accuracy: these 

two quantities can give indications on the amount 

of overfitting of the model. 

Monitoring learning process: what to plot



3) ratio of the weights: it is another quantity giving indications on the learning rate. It is calculated by taking the ratio of the update values to the 

magnitude values of the weights and the reference value indicating a good learning rate is 1.3.

4) activation and gradient distributions per each layer: a useful tool is the visualization of the distributions of the activations or the gradients at each 

layer. 

Distribution of the activation functions 

when initialization is performed using 

small random numbers. The mean stays 

constant, but the variance gets soon 

attenuated to zero. From Stanford 

lectures 



3) ratio of the weights: it is another quantity giving indications on the learning rate. It is calculated by taking the ratio of the update values to the 

magnitude values of the weights and the reference value indicating a good learning rate is 1.3.

4) activation and gradient distributions per each layer: a useful tool is the visualization of the distributions of the activations or the gradients at each 

layer. 

5) visualization of the first layer: when you work with images, it 

can be useful to visualize the features (weights) of the first layer. 

Noisy features could reveal unconvergence in the network, wrong 

learning rate, or low regularization penalty 

Left: noisy weights for the first layer of the neural network, right: smooth features that indicate the training is going 

fine, from the CS231n Stanford course in computer vision.

Distribution of the activation functions 

when initialization is performed using 

small random numbers. The mean stays 

constant, but the variance gets soon 

attenuated to zero. From Stanford 

lectures 

https://cs231n.github.io/neural-networks-3/


 The update is done along the direction 

of the negative gradient.

based on interpreting the loss as a potential 

energy function, it sets the initial parameters like 

to put a particle in an initial position with zero 

velocity. Then, if we imagine to apply a force to 

the particle, this force is the exactly the negative 

gradient of the loss function. In this case the 

gradient impacts the velocity, and then the 

velocity impacting on the position. There’s a new 

hyperparameter, that can be associated in the 

physical meaning to the role of friction that 

dampens the velocity and reduces the kinetic 

energy of the system. 

Momentum update 

Vanilla update

Nesterov momentum

similar to the one of the momentum 

update, but here we threat the future 

approximate position as a “look 

ahead”.

Newton’s method

it is a second order method that 

iterates an update dependent on the 

Hessian matrix, i.e.. a matrix of the 

second order partial derivatives of 

the function. The gradient vector is 

the same seen in the gradient 

descent. With the local curvature 

given by the Hessian, updates are 

more efficient.

Methods to update parameters



 The update is done along the direction 

of the negative gradient.

based on interpreting the loss as a potential 

energy function, it sets the initial parameters like 

to put a particle in an initial position with zero 

velocity. Then, if we imagine to apply a force to 

the particle, this force is the exactly the negative 

gradient of the loss function. In this case the 

gradient impacts the velocity, and then the 

velocity impacting on the position. There’s a new 

hyperparameter, that can be associated in the 

physical meaning to the role of friction that 

dampens the velocity and reduces the kinetic 

energy of the system. 

Momentum update 

Vanilla update

Nesterov momentum

similar to the one of the momentum 

update, but here we threat the future 

approximate position as a “look 

ahead”.

Newton’s method

it is a second order method that 

iterates an update dependent on the 

Hessian matrix, i.e.. a matrix of the 

second order partial derivatives of 

the function. The gradient vector is 

the same seen in the gradient 

descent. With the local curvature 

given by the Hessian, updates are 

more efficient.

good practice in machine learning is to anneal the learning rate over time. You can imagine the learning 

rate as a sort of level of kinetic energy available in the system. When it is too high, particles bounces 

randomly around and cannot reach the minima. However, we need to be careful on how we make the 

learning rate decay, because too slow decay can make the system converge too quickly, without finding the 

best position. Types of implementation for the learning decay: the step decay, the exponential decay, 1/t 

decay.
and many more: Adagrad, RMSProp, Adam, L-BFGS

Methods to update parameters



that’s it 
for today!
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